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e address the problem of simultaneous pricing of a line of several products, both complementary products and
Wsubsﬁtuta, with a number of distinct price differentiation dlasses for each product (e, volume discounts, different
distribution channels, and customer segments) in both monopolistic and oligopolistic settings. We provide a generic framework to
tackle this problem, consider several families of demand models, and focus on a real-world case-study example. We propose an
iterative relaxation algorithm, and state sufficient conditions for convergence of the algorithm. Using historical sales and price data
from a retailer, we apply our solution algorithm to suggest optimal pricing, and report on numerical resuits.
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1. Introduction

Recently, the problem of multi-attribute transactional
pricing received a lot of attention. The papers by Elma-
ghraby and Keskinocak (2003), McGill and van Ryzin
(1999), and Chiang et al. (2007) provide thorough over-
views of the areas of dynamic pricing and revenue
management. Earlier research concerning heuristic algo-
rithms of product-line pricing may be found in Oren
et al. (1984) and Dobson and Kalish (1988). Gallego and
van Ryzin (1994) and Lin and Li (2004) also considered a
multi-product dynamic pricing problem viewed as a
dynamic programming problem, assuming that custom-
ers arrive sequentially according to a Poisson process.
Kachani and Perakis (2006) borrow modeling tools and
solution methods from traffic theory, and propose a fluid
approach to multi-product pricing. In addition, Kachani
et al. (2007) consider the problem of joint pricing and
demand learning in a competitive environment.

A broad body of operations research literature inves-
tigates the comparison between the centralized and
decentralized profits for firms offering a product line of
differentiated products engaging in price competition.
Farahat and Perakis (2009, 2010) provide upper and
lower bounds on the ratio of profits under these two
scenarios. Perakis and Roels (2007) consider a similar
problem, measuring the efficiency of supply chains that
use price-only contracts. Cachon (2004) and Lariviere
and Porteus (2001) study the possible profit loss due to
decentralization in a setting consisting of a manufacturer
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and a retailer. Bernstein and Federgruen (2003) focus on
an analogous problem in a two-echelon distribution sys-
tem, in which a supplier distributes a product to
competing retailers, the demand rate for which depends
on all of the retailers’ prices similar to our premise. Adida
and DeMiguel (2010) also study the competition in a
supply chain with multiple manufacturers competing in
quantities to supply a line of products to multiple retail-
ers who compete in quantities to satisfy stochastic
consumer demand. Perakis and Zaretsky (2008) approach
the problem of competition in a supply chain with
exogenous demand using the fluid models’ framework.
The marketing literature focused on studying con-
sumer demand characteristics is similarly vast. Dubé
and Manchanda (2005) provide a very useful empirical
study of the differences in demand traits based on ge-
ography. Tellis and Franses (2006) are concerned with the
optimal data interval to estimate advertising carryover.
Our interest in the area of multi-product pricing
stemmed from a close collaboration during the past
several years between the authors and several firms,
including a leading office products retailer. This retailer
shared detailed historical operational data and business
insights with the authors, which motivated the models
proposed in the paper and led to the case study and
numerical implementation discussed in this paper.
Based on our work in this paper, the approach we
proposed was implemented by firms belonging to a
wide range of business-to-business (B2B) industries,
including chemicals, manufacturing, distribution and
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high-tech, and was implemented in a leading multi-
purpose pricing software.

In multi-product pricing problems, the pricing deci-
sions for different products are interdependent due to
the fact that the demand for one product may depend
on the prices of other products produced by the same
firm or its competitors. Thus, efficient pricing should
account for cross-elasticities among products. The com-
plexity of a pricing problem grows significantly as the
number of products increases. As a result of this and
the inability to make accurate demand predictions, in
most practical settings, multi-product dynamic pricing
problems are approximately solved by decoupling
across products and solving a large number of single-
product problems. We propose a more efficient solution
for multi-product pricing problems, which suggests
simple but efficient pricing policies.

In this paper, we address the problem of optimal
multi-product pricing, both in monopolistic and oligo-
polistic settings. We estimate the parameters of demand
models using historical data and consider different de-
mand models studied extensively in the econometrics
literature. The most relevant demand models to our
setting were introduced in Raz and Porteus (2003), Be-
sanko et al. (1998), and Chan and Seetharaman (2004).
The general problem is to maximize profits of a com-
pany producing a line of multi-attribute products, acting
in a monopolistic or an oligopolistic setting. We consider
five different models of consumer demand. In two of
them, we assume that the demand observed for each
product consists of a “deterministic” factor linear in
prices and a factor accounting for the cumulative dis-
tribution function of the product’s “reservation price.”

The probabilistic “reservation price” factor is particu-
larly important in B2B markets, especially in price-
negotiation settings (see, e.g., Bichler et al. 2002). In these
settings, customers issue quote requests for certain quan-
tities of products, and expect to get lower quotes for
higher quantities. The historical data available comes in
the form of triples of the type (incoming volume re-
quest—outgoing price quote—incoming response on
whether the deal is closed or rejected). Considering the
“reservation price” factor appears to be crucial in dealing
with problems of this nature and leads to important
theoretical insights and practical gains.

In each of these cases, we propose iterative algorithms
that deliver a centralized solution in a monopolistic set-
ting, or a Nash equilibrium in the case of an oligopolistic
setting. We study convergence of these algorithms and
prove easy-to-apply sufficient conditions for achieving
convergence. In the cases of linear and quadratic demand,
the algorithm simplifies considerably, as the correspond-
ing inner-step problem is solvable in closed form.

Also, a time-dependent extension to our models,
which incorporates the dependence of demand and
resulting optimal pricing policies on pricing history

through repeated interactions, is an important contri-
bution to the research on reference prices. This
extension further develops previous results by Green-
leaf (1995) and Popescu and Wu (2007).

We discuss how to obtain the necessary problem
parameters from historical data of the case study, and
analyze the developed algorithms and evaluate their
convergence properties. We also compare centralized
and game-theoretic solutions for a real-world problem
with historically realized numbers and evaluate the
impact of our solutions on the company’s profits and
the results of “cooperative” and “competitive” be-
havior with respect to the company’s competitors.

In the following sections, we introduce a general
framework for competitive multi-product multi-
attribute pricing, where cross-interactions between
different products and attributes are explicitly mod-
eled. These attributes include volume discounts,
distribution channels, delivery lead-times, customer
segments, or time (dynamic pricing strategies under
repeated customer interactions). We consider five
families of demand models widely used in the econo-
metrics literature, and propose an iterative relaxation
algorithm that we solve for the cooperative solution in
the centralized case, and for the Nash equilibrium in
the competitive case. We state sufficient conditions for
the algorithm convergence within the five respective
demand models. We discuss our implementation and
apply the developed algorithms to real-world prob-
lems, obtaining promising results for applications
both in B2B and business-to-consumer (B2C) markets.

2. Main Problem Statement

2.1. Monopolistic Problem

The decision maker in our setting faces the decision
process workflow shown in Figure 1. The input data,
either in the form of monthly/weekly prices and sales
volume levels or records of each transaction including
unsuccessful ones (request-for-price records), are sup-
plied to the demand forecast unit after appropriate
handling. Then, one of the five widely used demand
models is chosen, and the input data are regressed
against those to obtain the model parameters.

These parameters are subsequently supplied to the
price optimization engine. Taking into account the
optimization objectives and exogenous constraints,
non-linear optimization is used to compute the vector
of optimal prices. After the suggested optimal prices are
reviewed by the business intelligence unit and market
impact is tested, the model may be subject to recalibra-
tion and adjustment of parameters given the real-life
results obtained. At this stage, both changing demand
parameters (possibly, switching to a different demand
model) and re-optimizing for prices (adjusting the
optimization problem constraints) may be undertaken.
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More details regarding the application of this frame-
work are given in section 3.

We consider the optimization problem of simulta-
neous pricing of a line of N products, both
complementary products and substitutes, having M
distinct price differentiation classes for each product
(e.g., volume discounts, distribution channels, deliv-
ery lead-times, customer segments).

Alternatively, our problem may be viewed as the
pricing problem of a firm that produces and sells prod-
ucts based on a make-to-order production system so
that the firm does not hold inventory of end-products.
Then, one may consider average profit per unit-time
over a chosen fixed interval [0, T] as the objective func-
tion. Furthermore, one may consider M attributes also
as the different lead-times quoted for a given product at
different prices. At the same time, our framework is
readily applicable to dynamic pricing strategies, view-
ing time as an extra attribute dimension in the presence
of history-dependent demand (see repeated interactions
extension below for more details).

The overall objective is to maximize the profit func-
tion —TI, defined as

NM
-1=3" (py - )Dy,

ij=1

M

subject to
Cij < pij < Pf(-»

where ¢ and D;; are the corresponding cost and
demand, pf is the exogenous upper price threshold.
We assume that the demand Dj; is a function of the
price vector f = {p;;}. Note that we can easily extend

@)

our results to the case of arbitrary price limits, so that a
condition of the type p™" < p; < pif** will replace (2).

To estimate the dependence of the demand Dj;; on
prices of different products/product segments, we
use the historical sales datasets gathered for both B2C
(retail and consumer goods) and B2B (distribution)
markets. In the first two cases outlined below, we as-
sume that the demand observed for each product
consists of an “aggregate” factor (linear in prices in
the quadratic model) and a factor that accounts for the
probability distribution of the “reservation price”—
the highest price at which the consumer is willing to
buy the product. In other words, we assume that the
effective “market size” depends on a specified form of
the vector of prices, and that each consumer in this
market has a random reservation price that he/she
compares to the posted price to decide whether to
buy. The aggregate factor form is chosen among var-
ious models widely used in econometrics as the best
fit to historical data available (using historical weekly
or monthly sales volume and price data). When we
applied in practice these demand models to many
large datasets from various companies (both B2B and
B2C), we found that they exhibited good statistical fit.

2.1.1. Main (Quadratic Demand) Case. We consider
the case where the reservation price of a given product
is distributed uniformly on the interval [pf — Ay pil.
The product demand takes the form

— Pij
Dy(p) = A - = Bipij + Z hpa+ Z Qﬂ”‘/
k#i

&)
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Thus, the problem is to minimize [T—the opposite of
the profit function—

NM
pi = Py
=3 (y—ci)=5,
ij=1 K

“)
( qul/ + Z (D,]ka + z @uqu)

k#i
so that
EijSP{;—AijSPi/‘SPg» i=1,...,N,j=1,....M.

2.1.2. Exponential Distribution Case. In this case,
we assume that the reservation price of a given
product is distributed exponentially with parameter
7ij» 1., with cumulative distribution function

Pj(p) =1 —e7"iP. (6)

The product demand functional form is now

Dy(p) = e~"iPi (a,/ Bipi + Z Yipi+ > Gqul)

ki
)

The profit funchor\ —Iis maxumzed in the closed
region, where p,, Ay <p; < Pq

2.1.3. Linear Demand Case. Considering the case
where there is no probabilistic factor in the demand
formula, we obtain

Du(P) - d,/ ﬁx]pll + Z plk + z ®1]pk) (8)
k#f k#i

In this case, the problem is easily tractable and
reduces to a classical result.

In the next two cases, we also assume there is no
reservation price factor involved, but use a more com-
plicated functional form for the deterministic factor.

2,1.4. Constant Elasticity Demand Case. We consi-
der the classical power-law form of demand function,
namely

InDjj = o — ﬁ,,lnp,,+2¢ lnp,k+z® Inpy.

©

This formula is used extensively in the econometrics
literature, when the customer’s choice is assumed to
be continuous (see Talluri and van Ryzin 2004a for
more details).

2.1.5. Multi-Nomial Logit (MNL) Case. We also
consider another demand model used in the econo-
metrics literature to account for discrete customer

choice, the MNL model. Here, the demand function
takes the form (see Besanko et al. 1998, Talluri and van
Ryzin 2004a, b for more details)

e%i~Pipiy

—_— 10
]+Zk I'f" etn—Bupn a0

D,'/' =

Parameters in these models are estimated from
historical data according to the following rules (refer
to section 4 for more practical details):

e M(j=1,..., M) is the number of observable prod-
uct attributes or customer segments. This number
is exogenous in nature. In practice it is usually
clear from historical sales data.
Unit costs ¢;; can be different across the product’s
attributes (e.g., different costs for different vol-
ume segments due to economies of scale or
product attributes, and different costs to serve
different customer segments).
Parameters of the reservation price distribution
(e.g. p,,, Aj; in the quadrahc case) are determined
separately for each product / and product attribute
j» for example, from constructing cumulative dis-
tribution functions of prices using historical data.
e «, ff, ©, and ®—demand parameters introduced
below—are estimated from historical sales data
using linear regression for a given product seg-
ment. As it is customary to do so, we will assume
that 2; >0, f; >0 foralli=1,.. ,N,j=1,...,M,
while ® and ® can take any real values.

In most real-life cases encountered by the authors,
quadratic and exponential models appear to have
the most practical value (in terms of goodness of fit),
with the quadratic case also providing simpler
closed-form solutions. The linear demand model
may be viewed as a simpler approximation repro-
ducing classical results. Finally, the constant
elasticity and MNL models are prevalent in the
econometrics literature and are widely used to esti-
mate aggregate customer demand, in continuous
and discrete customer choice cases, respectively.

2.2. Competing Products Problem

We extend the previously stated monopolistic problem
to the case where I=1,...,L competing firms in the
oligopolistic setting introduce products i=1,...,N;
each; j=1,..., M, as before, enumerates differentiation
classes of the same product/competitor. We assume
that the number of products (not attributes) offered by
the /th firm may change with ! (if the jth attribute does
not apply to a given product, we let the corresponding
coefficient equal zero and skip it). We use quadratic
demand model in this section, although the results are
easily extendable to other demand functional forms, as
has been done for the monopolistic case.
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The utility of the Ith firm is given by

NEM PR — p
u = Z (puj — Cu,‘)%

=1

(11)
x| ouij + Z q’l,,Phk + Z ﬁ;',, Pk
=5
The price vector belongs to the domain
LNM
N R (12)

We are concerned with the existence of Nash equi-
librium in this setting.

In the next section, we will discuss the real-world
case study this research is based on, followed by the
more technical discussion of the solution algorithm in
the subsequent section.

3. Case Study and Practical
Implementation

3.1. Context
We now consider the problem specified in the previ-
ous section within the settings of a real-world
example, which acted as a motivation to this study.
Through an industry contact, the authors had access
to the sales records of a major office product retailer,
and the corresponding records of its major competitor.
The market both companies are in is essentially a
duopoly, with a less significant (<25%) market share
belonging to several smaller competitors. Most of the
sales in both companies occur through two distribu-
tion channels: (a) dedicated retail stores and (b) major
retail chains.

3.2. Data Handling and Demand Estimation
Procedure

The handling of price/sales volume data involves two
main steps. Raw price/sales data over a chosen interval
of time (e.g., 1 month) are preprocessed into a dataset
ready for demand estimation. Then, at step 2, demand
parameters for a chosen functional form are estimated
via regression on the data sample from step 1.

In the first step, the data are extracted in the form of
time series of prices and sales volumes for each prod-
uct/distribution channel (attribute). Evident outliers
are removed along with certain points accounting for
specific deals known 4 priori to be clearly irrelevant
and hinder the dependence.

Data points are plotted on the price vs. sales volume
graph. Specific choice of the time series subset (when
necessary, for example, to eliminate major sales
events, etc.) is explained. Sales volume data (if the
time horizon is monthly) are seasonally adjusted.

The preprocessed data are an input to the regression
module that estimates the demand parameters. For
each product considered, we assume the demand for it
to be a deterministic function of the prices of a subset of
all products considered. Which products belong to such
subset is a model choice. In practice, several alternative
assumptions for the subset of relevant products may be
considered, and the best fit chosen (such as the highest
R? coefficient among the alternatives).

In our study, we adopted a demand functional form
(see previous section for the functional forms of de-
mand considered), where the demand of the given
product offered through a particular channel depends
on its own price, the prices of all products in the
product line offered through the same channel, and
the prices of the same product in other distribution
channels (possessing different attributes). The prices
of products differing from the one in question in more

Figure2 Input Parameters for the 10 Products Produced by the Competing Firms (L = 2, N = 10, M = 2), Assuming Full Knowledge About Prices and Full
Interaction Between Different Stock Keeping Units, Quadratic Model Case

Note: Dark cells indicate terms excluded from the regression by the model adopted
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than one dimension (different product and different
distribution channel, etc.) are not included. Figure 2
demonstrates the cross-dependency matrix between
products. Only the white cells need to be filled via
regression in step 2. Blue cells have no effect on the
demand for a given product (defined by a given row
in the matrix).

In the (main) case of quadratic functional form of
demand, threshold price p§ and price range A (or
respective parameters of the reservation price distri-
bution, if non-uniform) are chosen using the data at
hand (based on the data’s range, etc.). The remaining
demand factor (accounting for cross-product influ-
ence) is estimated via multi-variate linear regression.

A sales volume series for each product in the prod-
uct line is linearly regressed against multiple time
series of prices of relevant products. Price series with
low explanatory power are then removed from the set
of regressors. Series of predictor prices that are
strongly correlated with other price series present
are also removed, and the process is repeated until
satisfactory significance level is reached.

3.3. Computational Results

We are concerned with how the company’s optimal
pricing choices and respective profits compare under
different scenarios for the company facing a single com-
petitor of comparable size, both having their sales largely
concentrated in two distribution channels. First, we as-
sume that one of five different scenarios holds, and
compute the profits attained under each of these scenar-
i0s. Second, we discuss how the company would fare if it
adopted the optimal pricing policy recommended under
each scenario while, in fact, facing a “true” competitive
environment (with the competitor firm responding to the
price change with its own optimal pricing policies).

We consider the following five scenarios:

A. Centralized optimization solution: Both firms collude,
seeking to maximize the sum of their profits, regardless
of the distribution of profits between the two.

B. Nash equilibrium: The two firms compete, each
assuming that the competitor will respond to any
pricing policy changes in an optimal way.

C. Optimization ignoring cross-product influence: All
cross-product elasticities are assumed to be zero; only
the product’s own price is assumed by the company
to have an effect on the demand for the product.

D. Optimization ignoring competition: Cross-product
elasticities for products offered by different firms are
assumed to be zero; only the prices of products sold
by the same firm are thought to have an effect on the
demand for the product.

E. Myopic optimization: Cross-product influence is pres-
ent; however, each firm assumes that the competitor
holds its prices fixed and does not respond to the change.

These scenarios are compared with the historically
realized case involving actual prices quoted for the
products offered on the same time interval, and were
not a result of a comprehensive optimization solution.

The output of the algorithm for the above cases (vs.
different assumptions about the actual demand func-
tional form) and the corresponding historical (unopti-
mized) performance data are presented in Table 1. The
actual profit numbers are computed under three differ-
ent assumptions: quadratic, linear, and exponential
functional form of demand, as defined in the previous
section. Note that the conclusions are similar under all
three assumptions; the sensitivity to demand functional
form is discussed in the next subsection.

The numbers in Table 1 are profit values for the firm
under study, faced with a competitor of similar size/
market power.

In Figure 3, we assume that the different optimization
scenarios we consider (A through E) are true (e.g, in
case C, that there is indeed no cross-product influence
between the products) and compute the firm'’s profits.

As expected, the profit figures obtained show that
the centralized solution A performs much better than
the one realized historically on the interval considered
(in the quadratic case, the centralized solution exceeds
the historically realized profit by 44.4%).

In the competitive case B, the Nash equilibrium so-
lution that utilizes all the interaction data leads, for
the quadratic demand model, to a profit improvement
of 18.3%. The centralized solution is superior to the
Nash equilibrium case as expected.

The solution C that does not take into account cross-
elasticities between products appears to be subordi-
nate to the full-interaction centralized solution
(exceeds the historical profit only by 14.3%, which is
30.1% less than the collusion case), although it is still
advantageous compared with the historical one.

A myopic solution E where one firm optimizes its
profits without having full knowledge about the com-
petitor (having access to the competitor’s prices but not

Table1 Profit Values in Different Scenarios vs. Different Assumptions
About the Actual Demand Functional Form

Quadratic Linear  Exponential
Profits (USS) (Us$) {US$)
Centralized optimization solution 799,098 777,385 799,076
Nash equilibrium point 654,388 651,894 645,411
Optimization ignoring 632461 638,270 619,214
cross-product influence
Optimization ignoring competition 666,877 658,811 650,442
(no cross-firm infiuence)
Myopic optimization 657,952 656,833 643,967
(assuming competitors have fixed
prices)
Historically realized 553,220
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demand parameters) is also (by 23.9% of the historically
realized value) worse than the centralized solution.

The experimental runs with real data described
here yield in most cases to a vector of optimal prices
higher on average than prices realized historically.
However, this does not lead to a significant reduction
in sales volume because of the cross-elasticity inter-
actions between substitute products.

Differently from the assumption for Figure 3, we
consider for the purpose of Figure 4 that firms adopt
scenarios A-E, while, in fact, the reality is that both
cross-product influence and competition exist. For in-
stance, in case C, we now consider that the firm
mistakenly ignores cross-product influence, while in

Centralized
Optimization Solution

Nash Equiibrium
Solution

Myopic Optimization

Have Fixed Prices)

case D, we assume that the firm mistakenly ignores the
influence of competition. Not surprisingly, the profits
in cases A and B remain unchanged because these
cases properly account for cross-product influence
and the existence of competition. However, we would
expect cases C, D, and E to perform worse than in
Figure 3 where those cases were assumed to reflect
reality. In Figure 4, we can observe that neither the
fixed-competitors case, nor the case when influence
across firms is ignored properly account for the effect
of competition. Cross-elasticities for the same prod-
ucts produced by different firms are usually positive
(products are substitutes), while self-price elasticity is
usually negative. As a result, in the case when a firm

Figure4 Profits Under Ditferent Optimization Scenarios Assuming Cross-Product Influence and Competition Exist (Quadratic Demand Case)
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Table2 Profits Attained when Adopting Optimal Pricing Policies, When
Different Functional Demand Models are Relevant

Optimal for Optimal for Optimal for
quadratic (US$) linear (US$)  exponential (US$)
Quadratic demand 799,098 796,774 770,487
Linear demand 772,408 777,385 740,392
Exponential demand 768,857 760,007 799,076

ignores cross-product interaction, it tends to price
conservatively. However, if one accounts for the prod-
ucts’ cross-elasticities while keeping competitors’
prices fixed, one prices more aggressively, which
leads to an even worse outcome due to the reaction of
the competition. In other words, in many cases (e.g.,
when cost firms’ cost structures and pricing powers
are similar), it is better to ignore competition al-
together than to partially (and erroneously) incorpo-
rate competitive dynamics (in this case, assuming
competitors have fixed prices and performing one-
step [myopic] optimization).

Finally, we explored the robustness of the results we
obtained to the choice of demand functions. We com-
pared the performance of optimal solutions found
assuming a certain demand functional form under sce-
narios where the “true” demand function can be
different. For instance, the vector of optimal prices
found in the quadratic model is used to compute the
optimal profit attained when profit functions of different
models are used. Through this “sensitivity test” (for this
and other companies and industries we looked at), we
can provide some empirical evidence that the optimal
profits under different demand models appear to be
reasonably close to each other, each of them exceeding
historical profits realized. Thus, the error in choosing a
less appropriate demand model among the first three
families of demand we used in this paper is not very
significant. In Table 2, we provide a numerical illustra-
tion of this robustness for this case-study example.

3.4, Practical Application
We applied the methodology described above to over
a dozen companies in various industries. Hence, the
findings and insights discussed are fairly general and
can be applied to a wide range of companies and in-
dustries, both in B2B and B2C settings.

Below, we discuss practical insights from the im-
plementation of our models and algorithms across
several dimensions:

Data quality and business rules: Data quality varies
from one company to another, and even within the
same company, from one division to another or from
one region to another. Data quality issues include
short historical horizon, missing data, erroneous data
(e.g., very large or negative volumes and sales), cen-

sored data, and availability of data only at the
aggregated level (e.g., by day or week or at product
family level) instead of a granular level (i.e., transac-
tional level by stock keeping unit). To remedy data
quality issues, companies and pricing solution pro-
viders use a host of statistical methods to clean the
data and estimate missing data.

When companies that suffer from poor data quality
implement price optimization solutions, they invest in
building robust information and data systems and a
host of business rules that override demand-price
elasticity coefficients and optimized prices when these
numbers do not make business sense (e.g., demand-
price elasticities that clearly have the wrong sign or
implied price changes that are too high and would
impact customer behavior). B2B companies tend to
suffer more from poor data quality and are more vul-
nerable to the effect of that data quality because a
small number of customers usually drive a large per-
centage of volume.

Most of the pricing business rules deal with limiting
price changes, volume changes, or market share
changes from one period to another, both at the prod-
uct level and the product family level. In cases of high
(respectively, low) inventory levels, constraints on the
absolute level of sales are imposed to reduce inven-
tory levels (respectively, avoid stockouts). In some
B2B settings, business rules might override optimized
prices in more than 50% of the cases until data quality
improves. Even with high quality data, it is our ex-
perience that business rules still override at least 20%
of optimized prices. The answer of some price solu-
tion vendors is to add business rules as constraints
within the optimization models. However, this tends
to be more of a marketing slogan: If added as con-
straints, many of these business rules would make
convex optimization problems non-convex. Solution
algorithms developed for convex problems cannot
then be proven to converge to a global optimum. In
effect, those algorithms then become heuristics, and
the optimized prices they output tend anyway to hit
the right-hand side of the price change constraints,
hence yielding the same prices as if the business rules
were implemented a posteriori.

Dealing with the impact of censored demand data is
attracting more attention in practice. In retail settings,
both retailers and consumer good manufacturers are
investing in better information systems to capture
magnitude of lost sales and time interval of stockouts,
as well as implementing statistical tests and methods
to correct for censored data.

Segmentation and demand models: Demand estimation
and price optimization rely heavily on a good segmen-
tation of the data across price differentiation classes.
These price differentiation classes include customer
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segments, distribution channels, regions, volume dis-
counts, and delivery lead-times. Price optimization
vendors and large B2C companies include in their pric-
ing systems automated segmentation models based on
statistical and data mining techniques.

As discussed in the previous subsection, our opti-
mization engine works equally fast for all five families
of demand functions we introduced in the paper.
From our experience with over a dozen companies,
the quadratic, exponential, and linear demand models
(in this order) outperformed the constant elasticity
demand and the MNL models in terms of best statis-
tical fit of the data. The MNL functional form of
demand is less efficient for our problem, because it
does not capture in the same way the interaction be-
tween different products and product attributes, and
is harder to calibrate in practice.

Business and technological requirements: Most large
firms rely more and more on versatile and industry-
independent (as opposed to custom-coded) pricing
systems that then offer high configurability and ex-
tensibility combined with high performance and
scalability. Some systems boast the use of metadata-
driven architecture and fully configurable user inter-
faces (including dashboards) and the ability to handle
thousands of pricing requests per second and hun-
dreds of simultaneous users with different roles and
pricing (discount) power across many functions, in-
cluding sales, marketing, finance, and operations.

The main reason behind these business (and im-
plied technological) requirements is that price
optimization is only one part of price management.
The best price management systems combine best
practices in pricing with advanced price optimization
and world-class enterprise software. In many settings,
the ability of pricing systems to interact with multiple
database systems, enterprise resource planning sys-
tems, customer relationship management systems,
and supply chain management systems, to input or
output massive data (millions and sometimes billions
of data points), and then aggregate and perform con-
versions (e.g., currency and unit of measure) and
computations/analytics on the data in real time far
outweighs in the mind of most executives the ability
to obtain slightly more accurate elasticity estimations
or optimized prices.

This is what prompted us to develop a generic
framework and approach to multi-product multi-at-
tribute pricing, use general demand models, and
implement efficient price optimization algorithms that
could perform very well under these business con-
straints. Although stand-alone and customized
consulting engagements and software in the area of
pricing have great value for strategic pricing decisions
and new product launches, or in specific or niche in-

dustries, in most settings, tactical and operational
dynamic pricing is moving toward the development
of plug-and-play demand estimation modules and
price optimization engines that can be incorporated
without much effort in established price management
software and run in real time.

4. Solution Algorithm and Its
Convergence

4.1. Algorithm Description
In this section, we provide details on the solution al-
gorithm used and discuss its convergence properties.
The mathematical programming and fixed-point al-
gorithms for non-linear optimization each have their
own advantages; however, separately, they either lack
the generality or the computational efficiency that is
necessary for solving large-scale models (Carey 1977,
Harker and Pang 1990). Variational inequalities (VIs)
were proposed (Dafermos 1983, Gabay and Moulin
1980, Nagurney 1993) to fill the gap created by math-
ematical programming and fixed-point approaches.
Because of the efficiency required for solving large-
scale problems and inherent diagonal dominance of
the problem’s Hessian, we use the non-linear iterative
scheme by Dafermos (1983) within the VI framework,
both in monopolistic and oligopolistic case of our
problem. Non-linear iterative relaxation algorithm ap-
pears to outperform the linearized methods in similar
equilibrium problem settings (Pang and Chan 1982).
We consider the centralized problem (1) in this sec-
tion; later we extend it to the competitive case as well.
Where appropriate, we index the price vector § =
{p,-]-}Z-ﬂ with a single letter m =1,..., MN; we denote
by K the domain where the function is minimized,
which is a product of corresponding price intervals.
The problem is solved using an iterative algorithm.

The general algorithm is as follows:

o Initialization step m = 0: Choose pReK.
e Step m: Compute p™ as the solution of VI

(™. p" ) p—p"y20, VpeK  (13)

o Convergence verification: Step m=1,2,... is re-
peated until

|pm _ pm—ll <e (14)
for a predefined tolerance parameter &
Here, the generating function § is defined as
= oIl
en(p,8) = a(slw~~'5m—1vpm-5m+l~~--vSMN)a (15)
m=1,...,MN.

Convergence of the general algorithm is proven in
the subsequent subsections.
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On a large set of problems considered by Marcotte
(1995), the relaxation algorithm performed better, in
terms of computational time and accuracy, than the
other considered algorithms such as Newton method
and different linearization approaches. Furthermore, as
investigated by Pang and Chan (1982), in terms of prac-
tical performance, one should expect that the closer the
Hessian is to being symmetric, the better the symmetri-
zed Newton method will behave. In the case of the non-
linear relaxation algorithm, the more diagonally dom-
inant the Hessian is (as in the problem at hand), the
better the relaxation method is expected to perform.

The solution of the inner subproblem (13) is equiv-
alent to minimizing a function of the form

MN
P=Y Pfsi....
k=1

+Sk=11 Pk Sk410 -+ < SMN) (16)

with p=p™, s=p" "', This problem splits into MN
one—dunensmnal conditions. In the interior of the fea-
sible set, these conditions are written as

0Py
a—Pk‘(pk‘g)*O‘ k=1,..., MN. (17)

In the case of quadratic demand, these first-order
conditions are one-dimensional quadratic polynomials,
and the solution is therefore available in closed form. In

cases of more involved functional form of demand, a
one-dimensional equation is solved numerically.

4.2, Algorithm Convergence

For brevity, we formulate the convergence conditions
only in the main case of quadratic demand. Analo-
gous results for the other demand functional forms
considered are provided in the supporting informa-
tion Appendix 51.

The convergence of the relaxation algorithm
applied to the general problem of minimizing I1 is
governed by the following proper diagonal domi-
nance condition on the objective function’s Hessian:

THEOREM 1. A sufficient condition for the relaxation algo-
rithm to converge is

It is important that the condition (18) automatically
provides the problem’s convexity, and, as a result, the
uniqueness of the minimization problem’s solution
that the algorithm converges to.

31
? 1opiopy

o |,
opyOpu

=

%fﬁfpfi > sup{z

m (kg

Vi=1,...Nj=1..,M (18)

Define the positive semi-axis characteristic function

sl =TT

2 (19)

Now,

THEOREM 2. A sufficient condition for the relaxation algo-
rithm to converge in the quadratic case is

21 ( ﬂlj(ZPU - CU + Z d)u (prk 2@ )Aik)
+ Z @,] (Pk/ x(@s)Ak])> >

ki

of @
Z(lA,-,'» e+l -

|}l .
* Z( P —ci) + —AZ (R —cg) |, Vij.
j

A

(20)

The condition (20) is not restrictive and holds with
real data that we gathered in B2B and B2C settings
(see discussion in section 5).

In the general multi-product case, the Hessian ma-
trix has sparse structure (see the proof in the
supporting information Appendix 51 for details).
One may also consider the situation where only in-
teraction between attributes j and j+ 1 exist; in this
case only two subdiagonals are non-zero on each side.

It is important to mention that Theorems 1 and 2 give
sufficient conditions for the algorithm convergence. In
fact, the algorithm may converge when these conditions
are not met. It may be shown (by replacing K in the
proof of Theorem 1) that, if the objective function’s
Hessian is positive definite in a small subdomain of X,
the algorithm still converges if the initial point is chosen
appropriately within this subdomain. Choosing a
smaller domain for K gives weaker conditions that lead
to important heuristic uses of the algorithm proposed.
For example, as mentioned before, we can formulate a
condition analogous to the one in Theorem 2 assuming
that the prices change in the region pjj*" < p;; < pi™
with arbitrary boundaries independent of Aj;.

Similar convergence results hold for the other four
functional forms of demand. For their exact formulations
and proofs, see the supporting information Appendix S1.

It is also worth mentioning that the respective
model Hessians are not always diagonally dominant
(the diagonal dominance condition holds for every
separate row). This is due to the fact that the products
considered may differ significantly in price (and
therefore parameter scale). However, in practice, in
most of the datasets and companies we considered,
the algorithm exhibited reliable convergence, to a
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unique optimum. In cases where the input sales data
were not of good quality and multiple local optima
existed, we followed practice by enhancing the algo-
rithm with straightforward business rules (heuristics)
to ensure that the algorithm converges to prices and
expected demand levels that make business sense.

Furthermore, when implemented in Excel and VBA,
the algorithm converges quickly (in <5 seconds, in-
cluding preprocessing, choice of best fit demand
function, and estimation of demand parameters) for
medium-size problem instances (10 products, 4 attri-
butes, 5 years of historical sales data). Finally, when
implemented into software, all the computations of
optimal prices can be achieved in real time for large
divisions of Fortune 500 corporations (using sharp
stopping criteria [e.g., ¢ =10"°]).

4.3, Competing Products Problem
Here, we consider the case where [=1,..., L competing
firms in the oligopolistic setting introduce products
i=1,..,N; each; j=1,..,M, as before, enumerates
differentiation classes of the same product/competitor.
We assume that the number of products (not attributes)
offered by the lth firm may change with ! (if the jth
attribute does not apply to a given product, we let the
corresponding coefficient equal zero and skip it). We use
quadratic demand model in this section, although the
results are easily extendable to other demand functional
forms, as has been done for the monopolistic case.

The utility of the lth firm is given by (11). We are
concerned with the existence of Nash equilibrium in
this setting.

Gabay and Moulin (1980) states the following:

THEOREM 3. p* is a Nash equilibrium if and only if p* € K is
a solution of the VI

(F{p").p—p") 20, Vpek, (21)
where
R = (o o ki),
P11 Opivm, Opam OpLN, M,
(22)
In our case,
ou _
aPm (Pl,,+flu pr)

G‘/u + Z q’l,/Phk + Z ﬁl,, Pmlq)

mk=1

e (D;ikm (Prx — cuie) (PR — Puik)
W i

|
+ Xk: Bl o (g — cw) (Pl — Pwi)- (23)

The initial methods used to compute Nash equilib-
ria were based on the constructive proof by Lemke
and Howson (1964) of the existence of an equilibrium
for a bimatrix game, and have come to be known as
fixed-point methods. Unfortunately, fixed-point meth-
ods have experienced tremendous difficulties in
solving large-scale problems. The other traditional
approach to solving equilibrium models is mathemat-
ical programming. As discussed in Carey (1977),
reformulating as a tractable non-linear programming
problem required very restrictive assumptions on the
model. As a result, solving equilibrium models as
optimization problems does not provide a satisfactory
alternative to fixed-point methods. As also discussed
above for the monopolistic problem, the non-linear
iterative relaxation algorithm outperforms such meth-
ods in similar equilibrium problem settings.

We solve this problem using the relaxation algorithm
described earlier adjusting (15) appropriately by re-
placing the objective —IT with the utilities of each
competitor U;. Theorem 1 then gives sufficient condi-
tions for its convergence when I1 is replaced with — U;.

Using the positive semi-axis characteristic function
defined above, we formulate the main convergence
condition for the competitive case:

Theorem 4. A sufficient condition (under the quadratic
demand model) for the relaxation algorithm to converge to a
Nash equilibrium is

2

Ay (% * Z j; (Phk 1 "I)A""‘)

+ Z B (i — x(ﬂ,",-;*)Amk,-))
21/3111 (p)sr Clu)

= E (l hl ( Piij — i) + 5 ’kl (pﬁk — Ciik) )

Il[

k%
18]
+3 3 vl —eu)
m#Al  k
B A
" E (} l/\ ( PR~ cij) + V;i—(pﬁ,- — Clk,‘))‘ (24)
Pt ll 1kj

5. Repeated Interactions Extension

The framework set up above is readily applicable to
yet another important extension—dynamic pricing
strategies, viewing time as an extra attribute dimen-
sion. Our approach provides an efficient method to
further elaborate and extend recent research (Green-
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leaf 1995, Popescu and Wu 2007) on dynamic pricing
in the presence of history-dependent demand.

The first step is to consider a system optimal pricing
solution for a set of i=1,...,N products, with the
other index j =1,..., T enumerating a finite set of mo-
ments in time. Thus, we consider the main problem
analogous to the multi-attribute pricing case

NM

PPy
x>y

AT

x | o+ Z Pup + Z Oupy

k<j

Technically, we can regress this demand form
against the available data as is (in full generality with
respect to ©@ parameters above), but this may not be
the optimal solution, as we may not capture the
behavior of demand elasticities with respect to past
prices (© factors) correctly in this way.

Instead, two more attractive ways are as follows:

A. We assume that the customer memorizes only
the previous price he has seen for a given product;
thus we only let ®;; _; be non-zero and regress such
model. Here

Dyj=%+Y  ypy+ Oppj_1. (26)
k

B. We introduce the reference price with exponen-
tial smoothing:

Dy=a;+ Y Oupy + ilpi — 1), (27)
ki
Tijs1 = ki + (1 — k)py (28)
with characteristic length 1/x.
Excluding r; using
pij — tij = pij + (kK = 1)pjj-1 (29)

K= Dpjz + -+ K 7pp,

we come up with the rule to define ® parameters in
the reference price model.

Using the representation of the reference price in
terms of time-dependent prices

j=1

Y= k'z (] = K)kp,',‘,k. (30)
k=1

we can recast the problem within the basic system-

optimal framework used before in (1).

We can derive a convergence condition in terms of
the parameters analogous to Theorem 2. The method
has the same efficiency in the centralized solution
model as dynamic programming. An important im-

provement of memory-dependent theory may be
obtained through competitive extension. In the com-
petitive case, our algorithm becomes more efficient than
the classical one. Furthermore, properties of competi-
tive strategies over time may be highly non-trivial.

6. Conclusion

To summarize, in this paper we introduced a generic
framework for competitive multi-product multi-
attribute pricing with explicitly modeled cross-interac-
tions between different products and attributes. We
proposed five different families of demand models
widely used in econometrics literature. We described a
relaxation algorithm, which we subsequently applied
to compute the cooperative solution in the centralized
case and the Nash equilibrium solution in the compet-
itive case, and provided sufficient conditions for the
algorithm’s convergence. We implemented and applied
the developed algorithm to a real-world case study,
and derived insights.

From a practical viewpoint, our analysis develops an
efficient and widely applicable way to address multi-
product pricing problems that incorporates cross-prod-
uct elasticity effects. When applied in practice to a wide
range of companies and industries, our approach led to
significant revenue improvements over typical heuristic
approaches to multi-product pricing.
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The Manufacturer’s Incentive to Reduce Lead Times
Santiago Kraiselburd, Richard Pibernik, Ananth Raman

The prevailing wisdom in supply chain management
says that all else remaining equal, managers should
seek to make their supply chains more responsive. In
other words, manufacturers should seek to reduce the
leadtime to respond to orders from their retailers be-
cause this would allow them to reduce stockouts in
the supply chain and, hence, would result in higher
sales. However, under some circumstances, the oppo-
site is possible. That is, increasing supply chain
responsiveness (or reducing leadtimes) can lead to
lower sales for the manufacturer. Two effects drive
sales to be lower with shorter leadtimes: a “safety
stock “effect (which comes from the idea that, if lead
times are long, retailers must “protect” their service
levels by keeping a large inventory, while short lead
times decrease the need for such protection), and an
“effort effect” (which is driven by the efforts that re-
tailers exert to sell more products). As it turns out,
these two effects interact in non intuitive ways, and
must be considered before a decision to reduce lead
times is implemented.

Real-Time Delay Estimation Based on Delay History
in Many-Server Service Systems with Time-Varying
Arrivals

Rouba Ibrahim, Ward Whitt

Waiting customers in service systems, such as a hos-
pital emergency department or a call center, are
typically unable to estimate their own delay. A long
wait, coupled with feelings of uncertainty about the
length of that wait, leads to poor service evaluation.
For system managers, making delay announcements
is a relatively inexpensive way of reducing customer
uncertainty about delays, thereby improving cus-
tomer satisfaction with the service provided. The
authors investigate alternative ways to estimate, in
real time, the delay of an arriving customer in a ser-
vice system. These delay estimates may be used to
make delay announcements. The authors focus espe-
cially on delay estimators exploiting recent customer
delay history in the system. Delay-history-based esti-
mators are appealing for complicated service systems
because they do not exploit information about system

vii

parameters and therefore adjust automatically to
changes in those parameters. The authors consider
the realistic feature of time-varying arrival rates. They
show that time-varying arrival rates can introduce
significant estimation bias in delay-history-based
delay estimators when the system experiences alter-
nating periods of overload and underload. They
introduce refined delay-history estimators that effec-
tively cope with time-varying arrival rates together
with non-exponential abandonment-time distribu-
tions, which are often observed in practice.

Competitive Pricing in 2 Multi-Product Multi-
Attribute Environment
Soulaymane Kachani and Kyrylo Shmatov

In multi-product pricing problems, the pricing deci-
sions for different products are interdependent due to
the fact that the demand for one product may depend
on the prices of other products produced by the same
firm or its competitors. Thus, efficient pricing should
account for cross-elasticities among products. The
complexity of a pricing problem grows significantly as
the number of products increases. As a result of this
and the inability to make accurate demand predic-
tions, in most practical settings, multi-product
dynamic pricing problems are approximately solved
by decoupling across products and solving a large
number of single-product problems. In this paper, the
authors propose a generic framework and approach to
multi-product multi-attribute pricing, use general de-
mand models and develop efficient price optimization
algorithms that they have successfully tested and im-
plemented in several industries.

Optimizing Customer Forecasts for Forecast-
Commitment Contracts
Elizabeth ]. Durango-Cohen, Candace A. Yano

Suppliers of customized products are seeking ways to
work with customers to reduce excess production while
simultaneously providing greater reliability of supply.
Cohen and Yano propose a Forecast-Commitment (FC)
contract that resembles what the ASIC manufacturer that
motivated this study was already doing vis-a-vis infor-
mation exchange with customers. But the contract also
includes incentives for the parties to act in their mutual
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